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The flow of perfect incompressible fluid in a channel bounded at its out - 
let by a flexible skirt in the form of an inflatable bag is considered. The 

bag material is assumed absolutely flexible, nonexpandable and weight - 
less: pressure inside the bag is taken to be equal to that in the channel . 
The assumption that the flow in the proximity of the outlet minimum cross 
section is one - dimensional makes it possible to eliminate pressure when 

simultaneously solving the equations of fluid motion and of bag equilib - 
rium . The derived differential equation for bag ordinates is solved nume- 
&ally; for mildly sloping bags a solution of closed form is obtained with 
the use of elliptic integrals. The applicability range of the mildly sloping 
bag is determined by comparing results of numerical and approximate cal- 
culations . The derived pattern of pressure distribution along the bag wall 

is in agreement with experimental data [l]. 

Flexible elastic skirts are widely used in modern transport equipment supported on 
air cushions. Such skirts fixed at the cushion chamber periphery make it possible to con- 
tain a considerable volume of air in the chamber and to overcome obstacles in the path 

of the equipment. Elastic inflatable bags fixed to the bottom of the equipment along its 
periphery and connected by a passage to the air in the cushion chamber belong to such 

structures (9. 
The aim of the present investigation is the determination of the outlet cross section, 

of the bag geometry, and of pressure distribution along its contour in terms of flow para- 

meters. 
Shape of the bag under working conditions is usually calculated on assumptions as 

follows [2]. Material of the bag is absolutely flexible but nonexpandable ; the skirt is 
weightless ; pressure inside the bag is constant and equal to the pressure in the cushion 
chamber when the two are connected by an air duct. The plane flow of perfect incom- 
pressible fluid is considered, i. e. the skirt is cylindrical with its axis normal to the di - 
rection of flow at infinity. These assumptions make it possible to reduce the problem to 
the investigation of the equilibrium of a flexible nonexpandable bag in a stream of gas 

Pl - P (4 = ToK 

where K is the bag contour curvature, ?‘a is the tension in bag walls, p1 the pressure 

in the latter, and p (z) is the pressure distribution in the outlet gap in the longitudinal 
direction. 

The described flow is schematically represented in Fig. 1. The bag is attached to 

*) USA patent p3291237, class 180 - 7, Dec. 13, 1966. 
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the equipment body at point A. Since the outlet gap is small and the bag is connected to 
the cushionchamber by an air duct, pressure in the bag p1 and in the air chamber PO 
are balanced along the fairly large part AC of the bag wall which is a straight line 
inclined to the horizon at angle Y. At the end point B of the bag curved section, whose 

shape is determined below, flow separation takes place. Point B is assumed sufficient- 
ly distant from point C as compared to the height of the outlet gap) so as to make pos- 

sible the assumption of one- dimensional gas flow in every channel cross section between 
the solid surface and curveCB. 

To the right of the separation point B the pressure drop Ap = p1 - pa, where 

PO is the atmospheric pressure, and as follows from Eq. (1. l), the part of the bag to 

the right of point B is of circular shape. We call that part of the bag passive, as op- 

posed to the active part ACB in contact with the flow. 

Tension of the bag passive part is determined by its radius-the inverse of curva - 

ture -by formula 

To = RAp (2) 

Denoting the velocity, pressure and the height of the gap bv u (z), p (z), h (AT) , 
respectively, at any section of the channel between CC1 and BB,, from the Bernoulli 

equation and the condition of continuity 

q+$Lq+2+, Q = uoHo = vh (x) 

we obtain the equation 

PI-P(X)= -f(&-&y] (p=&‘, Qkonst) 

We introduce the system of coordinates shown in Fig. 1, and using the expression for 

curvature in terms of h and t, from Eqs. (1) and (3) we obtain 

Tog[1+(~)“]-“‘= -&-&+] 

Multiplying both sides of Eq. (4) by dh / dx and integrating, we obtain 

(4) 

(5) 

where the constant C is determined by the boundary condition 

x = 0, h = ho, dhldx = - tg y (6) 

From (5) and (6) we have the equation for numerical solution 

(V 

The minus sign at the radical relates to section CO where the angle of the tan- 
gent to the contour is negative and the plus sign is taken for section OB . 

We solve Eq. (7) by Punge - Kutta method with the boundary condition h = ho 
at x=0. The plus sign at the radical in (7) is maintained until the radicand remains 
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positive, after which it is substituted by the plus sign. This means that the shape of the 
bag is first determined along section CO up to point 0 where the gap has its minimum, 
i.e. dh I dx = O,and then along section OB where dh / dx > 0. 

Simultaneously with the solution of Eq. (7) we determine at each point with coor - 
dinates 5, h (x) with the use of Eq.(3) the pressure difference 

We solve Eq.(7) until the pressure drop p (x) - pa which became negative in the 
vicinity of point 0 of minimum gap, becomes zero at point B where flow separation 

takes place. The tension Ta in Eq.(7) is determined by formula (2). 

Formulas (2)) (7)) and (8) show that the solution of Eq.(7) depends on a consider- 
able number of input quantities : the flow rate Q, pressure drop Ap and parameters 
which define the shape of the bag: the angle 1~ of its inclination at point c, the dis- 

tance H,, between the equipment body and the horizontal surface, height ho of the 
point at which the bag becomes curvilinear, and of radius R of curvature of the bag 

passive part. All parameters were chosen so that pressure p (x) would not become ne- 
gative along the curved section i’B. 

The calculation results are shown in Figs, 2-4. The shape of the2bag shown i,~ 
Fig. 2 was determined for the following parameters: Ap = 60 kg/m, Q -7 0.4:m /set, 

R = 21cm, Ho -= 30 cm, h = 5 cm, y ~~= - 20”, and the minimum gap I?,,, ,,,, y= 

1.08 cm. Coordinates z and y in Fig, 2 are given in 8”. The variation of pressure 

P (x) - Pa along the bag is shown in Fig. 3 in kg/m , where curve 1 relates to the 

same par 
1 

meters as Fig. 2, and curve 2 corresponds to the following parameters: Ap = 

lOOkg/m, Q 0.7m3/sec, R asp 28cm,H,, --5Ocm, h, ~- lOcm, y .~ -20: 
and the minimum gap hrrrin :: 1.53 cm. 

It is seen that in the vicinity of point 0, where the gap has its minimum an addi - 

tional rarefaction is present in the flow. Along a small section pressure p (5) falls be- 

low atmospheric, then increases, and at the separation point becomes equal to atmos - 

pheric . These results are in agreement with those obtained experimentally in [I]. 
The solution of problem (4)) (6) can be obtained for small angles y in the form of 

elliptic integrals. By expressing the second factor in Eq.(5) in the approximate form 
1 - l/a (dh / dx)2 and taking into account boundary condition (6)) instead of (7) we 

obtain the following equation: 

(9) 

where the minus sign shows that it defines the shape of the flexible contour along section 
CO (Fig. 1) up to point 0, where the angle of the tangent to the contour increases 

from its initial value - y to zero. 
Substituting r = I/h into (9) and integrating it with boundary conditions h== h,, 

at x == 0, we obtain 

IC -= Ho 
?dt 

1/(a” - z”) (TZ - c2) (10) 
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Fig. i 

Fig. 2 

u 5 ID X 

Fig. 4 
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(0 < c < al 

By substituting x2 = (as - TG2) / (a2 - c2) we can test the equality 

which is used for computing the integral in (lo), and where E (h, 4) is an elliptic 
integral of the second kind. 

If the gap h and its limit value ho satisfy the condition 0 < c ( I/h < l/G 
< a, formula (10) can be written as 

x = Hoa [E (A (4, d - 23 (A (ho), Q)I 

The shape of the bag in the vicinity of the minimum outlet gap is shown in Fig. 4 
in the form of curves 1 and 2 determined by the numerical solution of Eq.( 7) _ The 
small circles relate to the approximate solution obtained with elliptic integrals. 

Curve ;I in Fig, 4 relates to the same parameters as in Fig. 2 (y = -20”); curve 

2 corresponds to the following values of parameters: Ap = 60 kg/m: Q = 0.9 m3/sec. 
R = 15cm, H,, = 30cm, h = lOcm, y = -36,” and the minimum gap fb,rn= 

2.2cm. It will be seen that the numerical and the approximate solutions coincide for 

y = -20” and diverge for y = - 360. 
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